skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gaziano, J. Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ImportanceBody mass index (BMI; calculated as weight in kilograms divided by height in meters squared) is a commonly used estimate of obesity, which is a complex trait affected by genetic and lifestyle factors. Marked weight gain and loss could be associated with adverse biological processes. ObjectiveTo evaluate the association between BMI variability and incident cardiovascular disease (CVD) events in 2 distinct cohorts. Design, Setting, and ParticipantsThis cohort study used data from the Million Veteran Program (MVP) between 2011 and 2018 and participants in the UK Biobank (UKB) enrolled between 2006 and 2010. Participants were followed up for a median of 3.8 (5th-95th percentile, 3.5) years. Participants with baseline CVD or cancer were excluded. Data were analyzed from September 2022 and September 2023. ExposureBMI variability was calculated by the retrospective SD and coefficient of variation (CV) using multiple clinical BMI measurements up to the baseline. Main Outcomes and MeasuresThe main outcome was incident composite CVD events (incident nonfatal myocardial infarction, acute ischemic stroke, and cardiovascular death), assessed using Cox proportional hazards modeling after adjustment for CVD risk factors, including age, sex, mean BMI, systolic blood pressure, total cholesterol, high-density lipoprotein cholesterol, smoking status, diabetes status, and statin use. Secondary analysis assessed whether associations were dependent on the polygenic score of BMI. ResultsAmong 92 363 US veterans in the MVP cohort (81 675 [88%] male; mean [SD] age, 56.7 [14.1] years), there were 9695 Hispanic participants, 22 488 non-Hispanic Black participants, and 60 180 non-Hispanic White participants. A total of 4811 composite CVD events were observed from 2011 to 2018. The CV of BMI was associated with 16% higher risk for composite CVD across all groups (hazard ratio [HR], 1.16; 95% CI, 1.13-1.19). These associations were unchanged among subgroups and after adjustment for the polygenic score of BMI. The UKB cohort included 65 047 individuals (mean [SD] age, 57.30 (7.77) years; 38 065 [59%] female) and had 6934 composite CVD events. Each 1-SD increase in BMI variability in the UKB cohort was associated with 8% increased risk of cardiovascular death (HR, 1.08; 95% CI, 1.04-1.11). Conclusions and RelevanceThis cohort study found that among US veterans, higher BMI variability was a significant risk marker associated with adverse cardiovascular events independent of mean BMI across major racial and ethnic groups. Results were consistent in the UKB for the cardiovascular death end point. Further studies should investigate the phenotype of high BMI variability. 
    more » « less
  2. OBJECTIVETo characterize high type 1 diabetes (T1D) genetic risk in a population where type 2 diabetes (T2D) predominates. RESEARCH DESIGN AND METHODSCharacteristics typically associated with T1D were assessed in 109,594 Million Veteran Program participants with adult-onset diabetes, 2011–2021, who had T1D genetic risk scores (GRS) defined as low (0 to <45%), medium (45 to <90%), high (90 to <95%), or highest (≥95%). RESULTST1D characteristics increased progressively with higher genetic risk (P < 0.001 for trend). A GRS ≥ 90% was more common with diabetes diagnoses before age 40 years, but 95% of those participants were diagnosed at age ≥40 years, and they resembled T2D in mean age (64.3 years) and BMI (32.3 kg/m2). Compared with the low risk group, the highest-risk group was more likely to have diabetic ketoacidosis (low 0.9% vs. highest GRS 3.7%), hypoglycemia prompting emergency visits (3.7% vs. 5.8%), outpatient plasma glucose <50 mg/dL (7.5% vs. 13.4%), a shorter median time to start insulin (3.5 vs. 1.4 years), use of a T1D diagnostic code (16.3% vs. 28.1%), low C-peptide levels if tested (1.8% vs. 32.4%), and glutamic acid decarboxylase antibodies (6.9% vs. 45.2%), all P < 0.001. CONCLUSIONSCharacteristics associated with T1D were increased with higher genetic risk, and especially with the top 10% of risk. However, the age and BMI of those participants resemble people with T2D, and a substantial proportion did not have diagnostic testing or use of T1D diagnostic codes. T1D genetic screening could be used to aid identification of adult-onset T1D in settings in which T2D predominates. 
    more » « less